Weighted Fusion of Depth and Inertial Data to Improve View Invariance for Human Action Recognition
نویسندگان
چکیده
This paper presents an extension to our previously developed fusion framework [10] involving a depth camera and an inertial sensor in order to improve its view invariance aspect for human action recognition applications. A computationally efficient view estimation based on skeleton joints is considered in order to select the most relevant depth training data when recognizing test samples. Two collaborative representation classifiers, one for depth features and one for inertial features, are appropriately weighted to generate a decision making probability. The experimental results applied to a multi-view human action dataset show that this weighted extension improves the recognition performance by nearly 6% over equally weighted fusion deployed in our previous fusion framework.
منابع مشابه
Inverse Braking Radiation and Resonance Absorption in Corona Plasmas of Inertial Confinement Fusion
Abstract: In this paper, combining the Maxwell equations with the electron balanceequation, we obtain the inverse braking radiation absorption coefficient in a laser fusioncorona plasma. For a fixed plasma temperature, variations of the absorption coefficientversus the penetration depth into the plasma are illustrated numerically for differentvalues of laser wavelength. ...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملNaive Bayesian Fusion for Action Recognition from Kinect
The recognition of human actions based on three-dimensional depth data has become a very active research field in computer vision. In this paper, we study the fusion at the feature and decision levels for depth data captured by a Kinect camera to improve action recognition. More precisely, from each depth video sequence, we compute Depth Motion Maps (DMM) from three projection views: front, sid...
متن کاملPerformance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-noising method
Accuracy of inertial navigation system (INS) is limited by inertial sensors imperfections. Before using inertial sensors signals in the data fusion algorithm, noise removal method should be performed, in which, wavelet decomposition method is used. In this method the raw data is decomposed into high and low frequency data sets. In this study, wavelet multi-level resolution analysis (WMRA) techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016